Lecture Notes for Abstract Algebra: Lecture 4

1 Groups and examples

1.1 Groups

Definition 1. Let X be a set with a binary operation $*: X \times X \longrightarrow X$. The set X, together with the operationa *, is a group if:

- (i) There exist a neutral element $e \in X$ such that e * x = x * e = x for all $x \in X$.
- (ii) The operation is associative (x * y) * z = x * (y * z) for all $x, y, z \in X$.
- (iii) There exist an inverse: for all $x \in X$, there exist $x' \in X$ such that x * x' = x' * x = e.

A group is said to be abelian or commutative when we have the extra condition (iv) x * y = y * x, for all elements $x, y \in S$.

Remark 2. A group is not empty. It has at least a neutral element *e*.

Remark 3. A set X with a binary operation $*: X \times X \longrightarrow X$, satisfying only (i) and (ii) is called a monoid. A group, is then, a monoid where every element has an inverse. For instance, the naturals \mathbb{N} with multiplication with identity 1, is a monoid but not a group.

Example 4. Some examples of groups:

- (Vector spaces) A vector space (V, +) with addition of vectors as operation, is a commutative group. In fact, a commutative group (A, +) behave like a vector space over \mathbb{Z} . (Vector spaces with multiplication is not a group, because the operation gives scalar not vectors).
- (Cyclic group of order n) The group $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$, of integers with addition mod n, is an abelian group. This group is also referred to as: The cyclic group of order n and is also denoted by C_n .
- (Multiplicative group of units in \mathbb{Z}_n) Elements of \mathbb{Z}_n admitting a multiplicative inverse are called units of \mathbb{Z}_n . A non-zero element $k \in \mathbb{Z}_n$ admits inverse if and only the gcd(k, n) = 1. These elements form a group of order $\varphi(n)$ called U(n).
- (Group of *n*-roots of unity) Let n > 1 and consider the multiplicative set of complex roots $\Phi_n = \{\xi \in \mathbb{C} \mid \xi^n = 1\}$. This is also an abelian group.
- (Symmetric group) Let S be a set of n elements. The symmetric group S_n is the group of bijective maps $S \longrightarrow S$ with composition. S_n is non-abelian for n > 2.

- (General linear group over \mathbb{R}) The general linear group is the group $\operatorname{GL}_n(\mathbb{R})$ of invertible matrices (det $\neq 0$), with matrix multiplication. $\operatorname{GL}_n(\mathbb{R})$ is non-abelian for n > 1. As a generalization, we can take the group $\operatorname{GL}(V)$ of automorphisms on a vector space V (non-necessarily of finite dimension). The definition of $\operatorname{GL}_n(\mathbb{R})$ is based on the property $\det(A \cdot B) = \det(A) \det(B)$.
- (The special linear group) The special linear group $SL_n(\mathbb{R})$ or $SL(n,\mathbb{Z})$ of matrices with determinant 1. Also non abelian for n > 1.
- (The dihedral group) The group \mathbb{D}_n of symmetries on the regular polygon of n sides. As with the symmetric group, we use composition of maps as operation for the group. The groups \mathbb{D}_n are non-abelian for n > 2.
- (The Quaternions Q_8) As a generalization of the group $\{\pm 1, \pm i\}$ of fourth roots of unity, consider the group

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}, \text{ where } i^2 = j^2 = k^2 = -1 = i * j * k$$

It can be checked i * j = k, j * k = i, k * i = j, j * i = -k, i * k = -j and k * j = -i. This group is called the Quaternion group and is not commutative. For a matrix representation of Q_8 , see Judson page 42 Ex 3.15.

• (Direct product of groups) Given groups (G, *) and (H, .), we can construct a group that is the direct product of G and H. As a set, the direct product is just the Cartesian product $G \times H$ together with the operation

$$(g,h)(g',h') = (g * g',h.h').$$

The group $G \times H$ is called the external direct product of G and H.

• (Galois group of an extension) Suppose that F is a field and E/F is an extension, we can build the group of F-automorphism of E:

$$\operatorname{Gal}(E/F) = \{ \sigma \colon E \longrightarrow E \, | \, \sigma(x) = x \, \forall \, x \in F \}.$$

The operation on automorphisms being compositions of maps. For a polynomial p(x) with coefficients in the field F, we can consider the splitting field E_p , where p factors completely and the Galois group of the polynomial as $\text{Gal}(E_p/F)$.

Proposition 5. Let G be a group. Then, we have the following properties:

- (1) The neutral element is unique.
- (2) The inverse x^{-1} of x is unique.
- (3) For any elements $a, b \in G$, the equations a * x = b and x * a = b have unique solutions in G.

(4) The inverse $(a * b)^{-1}$ of the element a * b is the element $b^{-1} * a^{-1}$.

Proof. We proceed to do each of the points:

(1) Suppose that we have neutral elements e and e', then e = e * e' = e'.

(2) Suppose that x has two inverses x' and x'', then

$$x' = e * x' = (x'' * x) * x' = x'' * (x * x') = x'' * e = x''.$$

- (3) The solutions are $x = a^{-1} * b$ and $x = b * a^{-1}$ respectively.
- (4) $b^{-1} * a^{-1} * a * b = e$ and $a * b * b^{-1} * a^{-1} = e$.

Remark 6. Let G be a group and $x \in G$. The three most important actions that we can build in G:

- (1) Left multiplication: $f_x: G \longrightarrow G$, given by $f_x(y) = x * y$.
- (2) Right multiplication: $g_x: G \longrightarrow G$, given by $f_x(y) = y * x$.
- (3) Conjugation: $\varphi_x \colon G \longrightarrow G$, given by $\varphi_x(y) = xyx^{-1}$.

Corollary 7. Left multiplication, right multiplication and conjugation by an element are bijective maps $G \longrightarrow G$.

1.2 Cayley tables. Example of groups: \mathbb{D}_3 , the symmetries on the equilateral triangle

A symmetry of a geometric figure is a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles. Consider, for example, an equilateral triangle labeled $\{A, B, C\}$ and the rigid motions:

 $\rho_1 = \text{ rotation counterclockwise } 120^\circ \text{ with barycenter as origin, } \rho_2 = \rho_1^2, \quad \rho_3 = \rho_1^3 = id$

 μ_1 = reflection about symmetry axis through vertex A

 μ_2 = reflection about symmetry axis through vertex B

 μ_3 = reflection about symmetry axis through vertex C

There are some relations between these, for instance

 $\mu_1 \circ \rho_1 = \mu_2$ and $\rho_1 \circ \mu_1 = \mu_3$.

The Cayley table of a group is a table aimed to represent the structure of a group. The Cayley table for \mathbb{D}_3 looks like:

		id	ρ_1	ρ_2	μ_1	μ_2	μ_3
$\mathbb{D}_3 =$	id	id	ρ_1	ρ_2	μ_1	μ_2	μ_3
	ρ_1	ρ_1	ρ_2	id	μ_3	μ_1	μ_2
$\mathbb{D}_3 =$	ρ_2	ρ_2	id	ρ_1	μ_2	μ_3	μ_1
	μ_1	μ_1	μ_2	μ_3	id	ρ_1	ρ_2
	μ_2	μ_2	μ_3	μ_1	ρ_2	id	ρ_1
	μ_3	μ_3	μ_1	μ_2	ρ_1	ρ_2	id

Some other finite groups with their Cayley tables are:

		0	1	2	3			e	a	b	c
-	0	0	1	2	3		e	e	a	b	c
$\mathbb{Z}_4 =$	1	1	2	3	0	$\mathbb{V}_4 =$	a	a	e	c	b
	2	2	3	0	1		b	b	c	e	a
	3	3	0	1	2		c	c	b	a	e
2		$\mathbb{V}_{4} = \boxed{\begin{array}{c ccccc} e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \end{array}}$ $\mathbb{Z}_{3} = \boxed{\begin{array}{c ccccc} 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array}}$									

Practice Questions:

- 1. Show that the direct product of two groups is a group.
- 2. Draw a diagram showing all 8 symmetries of a square.
- **3.** Show that a non-zero element $k \in \mathbb{Z}_n$ admits inverse if and only the gcd(k, n) = 1.