Lecture Notes for Abstract Algebra: Lecture 4

1 Groups and examples

1.1 Groups

Definition 1. Let X be a set with a binary operation $*: X \times X \longrightarrow X$. The set X, together with the operationa $*$, is a group if:
(i) There exist a neutral element $e \in X$ such that $e * x=x * e=x$ for all $x \in X$.
(ii) The operation is associative $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$.
(iii) There exist an inverse: for all $x \in X$, there exist $x^{\prime} \in X$ such that $x * x^{\prime}=$ $x^{\prime} * x=e$.

A group is said to be abelian or commutative when we have the extra condition (iv) $x * y=y * x$, for all elements $x, y \in S$.

Remark 2. A group is not empty. It has at least a neutral element e.
Remark 3. A set X with a binary operation $*: X \times X \longrightarrow X$, satisfying only (i) and (ii) is called a monoid. A group, is then, a monoid where every element has an inverse. For instance, the naturals \mathbb{N} with multiplication with identity 1 , is a monoid but not a group.

Example 4. Some examples of groups:

- (Vector spaces) A vector space $(V,+)$ with addition of vectors as operation, is a commutative group. In fact, a commutative group $(A,+)$ behave like a vector space over \mathbb{Z}. (Vector spaces with multiplication is not a group, because the operation gives scalar not vectors).
- (Cyclic group of order n) The group $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$, of integers with addition $\bmod n$, is an abelian group. This group is also referred to as: The cyclic group of order n and is also denoted by C_{n}.
- (Multiplicative group of units in \mathbb{Z}_{n}) Elements of \mathbb{Z}_{n} admitting a multiplicative inverse are called units of \mathbb{Z}_{n}. A non-zero element $k \in \mathbb{Z}_{n}$ admits inverse if and only the $\operatorname{gcd}(k, n)=1$. These elements form a group of order $\varphi(n)$ called $U(n)$.
- (Group of n-roots of unity) Let $n>1$ and consider the multiplicative set of complex roots $\Phi_{n}=\left\{\xi \in \mathbb{C} \mid \xi^{n}=1\right\}$. This is also an abelian group.
- (Symmetric group) Let S be a set of n elements. The symmetric group S_{n} is the group of bijective maps $S \longrightarrow S$ with composition. S_{n} is non-abelian for $n>2$.
- (General linear group over \mathbb{R}) The general linear group is the group $\mathrm{GL}_{n}(\mathbb{R})$ of invertible matrices $(\operatorname{det} \neq 0)$, with matrix multiplication. $\mathrm{GL}_{n}(\mathbb{R})$ is nonabelian for $n>1$. As a generalization, we can take the group GL (V) of automorphisms on a vector space V (non-necessarily of finite dimension). The definition of $\mathrm{Gl}_{n}(\mathbb{R})$ is based on the property $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \operatorname{det}(B)$.
- (The special linear group) The special linear group $\mathrm{SL}_{n}(\mathbb{R})$ or $\mathrm{SL}(n, \mathbb{Z})$ of matrices with determinant 1. Also non abelian for $n>1$.
- (The dihedral group) The group \mathbb{D}_{n} of symmetries on the regular polygon of n sides. As with the symmetric group, we use composition of maps as operation for the group. The groups \mathbb{D}_{n} are non-abelian for $n>2$.
- (The Quaternions Q_{8}) As a generalization of the group $\{ \pm 1, \pm i\}$ of fourth roots of unity, consider the group

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}, \quad \text { where } \quad i^{2}=j^{2}=k^{2}=-1=i * j * k
$$

It can be checked $i * j=k, j * k=i, k * i=j, j * i=-k, i * k=-j$ and $k * j=-i$. This group is called the Quaternion group and is not commutative. For a matrix representation of Q_{8}, see Judson page 42 Ex 3.15.

- (Direct product of groups) Given groups $(G, *)$ and $(H,$.$) , we can construct a$ group that is the direct product of G and H. As a set, the direct product is just the Cartesian product $G \times H$ together with the operation

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g * g^{\prime}, h . h^{\prime}\right)
$$

The group $G \times H$ is called the external direct product of G and H.

- (Galois group of an extension) Suppose that F is a field and E / F is an extension, we can build the group of F-automorphism of E :

$$
\operatorname{Gal}(E / F)=\{\sigma: E \longrightarrow E \mid \sigma(x)=x \forall x \in F\}
$$

The operation on automorphisms being compositions of maps. For a polynomial $p(x)$ with coefficients in the field F, we can consider the splitting field E_{p}, where p factors completely and the Galois group of the polynomial as $\operatorname{Gal}\left(E_{p} / F\right)$.

Proposition 5. Let G be a group. Then, we have the following properties:
(1) The neutral element is unique.
(2) The inverse x^{-1} of x is unique.
(3) For any elements $a, b \in G$, the equations $a * x=b$ and $x * a=b$ have unique solutions in G.
(4) The inverse $(a * b)^{-1}$ of the element $a * b$ is the element $b^{-1} * a^{-1}$.

Proof. We proceed to do each of the points:
(1) Suppose that we have neutral elements e and e^{\prime}, then $e=e * e^{\prime}=e^{\prime}$.
(2) Suppose that x has two inverses x^{\prime} and $x^{\prime \prime}$, then

$$
x^{\prime}=e * x^{\prime}=\left(x^{\prime \prime} * x\right) * x^{\prime}=x^{\prime \prime} *\left(x * x^{\prime}\right)=x^{\prime \prime} * e=x^{\prime \prime}
$$

(3) The solutions are $x=a^{-1} * b$ and $x=b * a^{-1}$ respectively.
(4) $b^{-1} * a^{-1} * a * b=e$ and $a * b * b^{-1} * a^{-1}=e$.

Remark 6. Let G be a group and $x \in G$. The three most important actions that we can build in G :
(1) Left multiplication: $f_{x}: G \longrightarrow G$, given by $f_{x}(y)=x * y$.
(2) Right multiplication: $g_{x}: G \longrightarrow G$, given by $f_{x}(y)=y * x$.
(3) Conjugation: $\varphi_{x}: G \longrightarrow G$, given by $\varphi_{x}(y)=x y x^{-1}$.

Corollary 7. Left multiplication, right multiplication and conjugation by an element are bijective maps $G \longrightarrow G$.

1.2 Cayley tables. Example of groups: \mathbb{D}_{3}, the symmetries on the equilateral triangle

A symmetry of a geometric figure is a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles. Consider, for example, an equilateral triangle labeled $\{A, B, C\}$ and the rigid motions:
$\rho_{1}=$ rotation counterclockwise 120° with barycenter as origin, $\rho_{2}=\rho_{1}^{2}, \quad \rho_{3}=\rho_{1}^{3}=i d$

$$
\begin{aligned}
& \mu_{1}=\text { reflection about symmetry axis through vertex } \mathrm{A} \\
& \mu_{2}=\text { reflection about symmetry axis through vertex } \mathrm{B} \\
& \mu_{3}=\text { reflection about symmetry axis through vertex } \mathrm{C}
\end{aligned}
$$

There are some relations between these, for instance

$$
\mu_{1} \circ \rho_{1}=\mu_{2} \quad \text { and } \quad \rho_{1} \circ \mu_{1}=\mu_{3} .
$$

The Cayley table of a group is a table aimed to represent the structure of a group. The Cayley table for \mathbb{D}_{3} looks like:

$$
\mathbb{D}_{3}=\begin{array}{c|cccccc}
& i d & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\hline i d & i d & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\rho_{1} & \rho_{1} & \rho_{2} & i d & \mu_{3} & \mu_{1} & \mu_{2} \\
\rho_{2} & \rho_{2} & i d & \rho_{1} & \mu_{2} & \mu_{3} & \mu_{1} \\
\mu_{1} & \mu_{1} & \mu_{2} & \mu_{3} & i d & \rho_{1} & \rho_{2} \\
\mu_{2} & \mu_{2} & \mu_{3} & \mu_{1} & \rho_{2} & i d & \rho_{1} \\
\mu_{3} & \mu_{3} & \mu_{1} & \mu_{2} & \rho_{1} & \rho_{2} & i d
\end{array}
$$

Some other finite groups with their Cayley tables are:

$$
\begin{array}{r}
\mathbb{Z}_{4}=\begin{array}{c|cccc}
& 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2
\end{array} \quad \mathbb{V}_{4}=\begin{array}{l|llll}
& e & a & b & c \\
\hline e & e & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e \\
\\
\mathbb{Z}_{2}=\begin{array}{l|ll}
0 & 0 & 1 \\
\hline & 0 & 1 \\
a & 1 & 0
\end{array} \\
\mathbb{Z}_{3}=\begin{array}{l|llll}
& 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1
\end{array}
\end{array} .
\end{array}
$$

Practice Questions:

1. Show that the direct product of two groups is a group.
2. Draw a diagram showing all 8 symmetries of a square.
3. Show that a non-zero element $k \in \mathbb{Z}_{n}$ admits inverse if and only the $\operatorname{gcd}(k, n)=1$.
