
Lecture Notes for Abstract Algebra: Lecture 4

1 Groups and examples

1.1 Groups

Definition 1. Let X be a set with a binary operation ∗ : X ×X −→ X. The set X,
together with the operationa ∗, is a group if:

(i) There exist a neutral element e ∈ X such that e ∗ x = x ∗ e = x for all x ∈ X.

(ii) The operation is associative (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X.

(iii) There exist an inverse: for all x ∈ X, there exist x′ ∈ X such that x ∗ x′ =
x′ ∗ x = e.

A group is said to be abelian or commutative when we have the extra condition (iv)
x ∗ y = y ∗ x, for all elements x, y ∈ S.

Remark 2. A group is not empty. It has at least a neutral element e.

Remark 3. A set X with a binary operation ∗ : X × X −→ X, satisfying only (i)
and (ii) is called a monoid. A group, is then, a monoid where every element has an
inverse. For instance, the naturals N with multiplication with identity 1, is a monoid
but not a group.

Example 4. Some examples of groups:

• (Vector spaces) A vector space (V,+) with addition of vectors as operation, is a
commutative group. In fact, a commutative group (A,+) behave like a vector
space over Z. (Vector spaces with multiplication is not a group, because the
operation gives scalar not vectors).

• (Cyclic group of order n) The group Zn = {0, 1, 2, . . . , n − 1}, of integers with
addition mod n, is an abelian group. This group is also referred to as: The
cyclic group of order n and is also denoted by Cn.

• (Multiplicative group of units in Zn) Elements of Zn admitting a multiplicative
inverse are called units of Zn. A non-zero element k ∈ Zn admits inverse if and
only the gcd(k, n) = 1. These elements form a group of order ϕ(n) called U(n).

• (Group of n-roots of unity) Let n > 1 and consider the multiplicative set of
complex roots Φn = {ξ ∈ C | ξn = 1}. This is also an abelian group.

• (Symmetric group) Let S be a set of n elements. The symmetric group Sn is
the group of bijective maps S −→ S with composition. Sn is non-abelian for
n > 2.
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• (General linear group over R) The general linear group is the group GLn(R)
of invertible matrices (det 6= 0), with matrix multiplication. GLn(R) is non-
abelian for n > 1. As a generalization, we can take the group GL(V ) of au-
tomorphisms on a vector space V (non-necessarily of finite dimension). The
definition of Gln(R) is based on the property det(A ·B) = det(A) det(B).

• (The special linear group) The special linear group SLn(R) or SL(n,Z) of ma-
trices with determinant 1. Also non abelian for n > 1.

• (The dihedral group) The group Dn of symmetries on the regular polygon of n
sides. As with the symmetric group, we use composition of maps as operation
for the group. The groups Dn are non-abelian for n > 2.

• (The Quaternions Q8) As a generalization of the group {±1,±i} of fourth roots
of unity, consider the group

Q8 = {±1,±i,±j,±k}, where i2 = j2 = k2 = −1 = i ∗ j ∗ k.

It can be checked i ∗ j = k, j ∗ k = i, k ∗ i = j, j ∗ i = −k, i ∗ k = −j and
k ∗ j = −i. This group is called the Quaternion group and is not commutative.
For a matrix representation of Q8, see Judson page 42 Ex 3.15.

• (Direct product of groups) Given groups (G, ∗) and (H, .), we can construct a
group that is the direct product of G and H. As a set, the direct product is
just the Cartesian product G×H together with the operation

(g, h)(g′, h′) = (g ∗ g′, h.h′).

The group G×H is called the external direct product of G and H.

• (Galois group of an extension) Suppose that F is a field and E/F is an extension,
we can build the group of F -automorphism of E:

Gal(E/F ) = {σ : E −→ E |σ(x) = x ∀ x ∈ F}.

The operation on automorphisms being compositions of maps. For a polynomial
p(x) with coefficients in the field F , we can consider the splitting field Ep, where
p factors completely and the Galois group of the polynomial as Gal(Ep/F ).

Proposition 5. Let G be a group. Then, we have the following properties:

(1) The neutral element is unique.

(2) The inverse x−1 of x is unique.

(3) For any elements a, b ∈ G, the equations a ∗ x = b and x ∗ a = b have unique
solutions in G.
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(4) The inverse (a ∗ b)−1 of the element a ∗ b is the element b−1 ∗ a−1.

Proof. We proceed to do each of the points:
(1) Suppose that we have neutral elements e and e′, then e = e ∗ e′ = e′.
(2) Suppose that x has two inverses x′ and x′′, then

x′ = e ∗ x′ = (x′′ ∗ x) ∗ x′ = x′′ ∗ (x ∗ x′) = x′′ ∗ e = x′′.

(3) The solutions are x = a−1 ∗ b and x = b ∗ a−1 respectively.
(4) b−1 ∗ a−1 ∗ a ∗ b = e and a ∗ b ∗ b−1 ∗ a−1 = e.

Remark 6. Let G be a group and x ∈ G. The three most important actions that we
can build in G:

(1) Left multiplication: fx : G −→ G, given by fx(y) = x ∗ y.

(2) Right multiplication: gx : G −→ G, given by fx(y) = y ∗ x.

(3) Conjugation: ϕx : G −→ G, given by ϕx(y) = xyx−1.

Corollary 7. Left multiplication, right multiplication and conjugation by an element
are bijective maps G −→ G.

1.2 Cayley tables. Example of groups: D3, the symmetries
on the equilateral triangle

A symmetry of a geometric figure is a rearrangement of the figure preserving the
arrangement of its sides and vertices as well as its distances and angles. Consider, for
example, an equilateral triangle labeled {A,B,C} and the rigid motions:

ρ1 = rotation counterclockwise 120◦ with barycenter as origin, ρ2 = ρ21, ρ3 = ρ31 = id

µ1 = reflection about symmetry axis through vertex A

µ2 = reflection about symmetry axis through vertex B

µ3 = reflection about symmetry axis through vertex C

There are some relations between these, for instance

µ1 ◦ ρ1 = µ2 and ρ1 ◦ µ1 = µ3.

The Cayley table of a group is a table aimed to represent the structure of a group.
The Cayley table for D3 looks like:
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D3 =

id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

Some other finite groups with their Cayley tables are:

Z4 =

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

V4 =

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Z2 =
0 1

0 0 1
a 1 0

Z3 =

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Practice Questions:

1. Show that the direct product of two groups is a group.

2. Draw a diagram showing all 8 symmetries of a square.

3. Show that a non-zero element k ∈ Zn admits inverse if and only the gcd(k, n) = 1.
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